灰黄霉素纳米乳体外脂解过程中药物动态分布研究

林婉婷,龙晓英*,吴慧仪,卢彬,张颖峰

中国药学杂志 ›› 2015, Vol. 50 ›› Issue (6) : 512-520.

PDF(1997 KB)
PDF(1997 KB)
中国药学杂志 ›› 2015, Vol. 50 ›› Issue (6) : 512-520. DOI: 10.11669/cpj.2015.06.012
论著

灰黄霉素纳米乳体外脂解过程中药物动态分布研究

  • 林婉婷,龙晓英*,吴慧仪,卢彬,张颖峰
作者信息 +

Drug Distribution During in Vitro Lipolysis of SNEDDSs Containing Griseofulvin

  • LIN Wan-ting,LONG Xiao-ying*,WU Hui-yi, LU Bin, ZHANG Ying-feng
Author information +
文章历史 +

摘要

目的 建立与优化体外脂解模型,并研究灰黄霉素(griseofuvin,GRI)自纳米乳(self-nanoemulsifying drug delivery systems,SNEDDS)体外脂解过程中药物动态分布情况。 方法 以甘油三酯(triglyceride,TG)脂解的程度和速度为指标优化体外脂解模型,采用优化的模型研究甘油三酯的结构及含量对灰黄霉素自纳米乳(GRI-SNEDDS)体外脂解过程中药物在水性胶束相、沉淀相及脂质相动态分布的影响。 结果 优化后体外脂解体系组成:胰脂酶浓度800 U·mL-1,胆盐/磷脂胶束浓度为5/1.25 mmol·L-1,缓冲体系是50 mmol·L-1 Trizma maleate,中链甘油三酯(medium chain triglyceride,MCT)的脂解选择一次性加入5 mmol·L-1Ca2+,而长链甘油三酯(long chain triglyceride,LCT)则是逐步加入0.008 mmol·min-1Ca2+。相同甘油三酯含量下,长链甘油三酯自纳米乳脂解后水性胶束相中灰黄霉素的百分含量比中链甘油三酯自纳米乳高;灰黄霉素自纳米乳中甘油三酯含量增加一倍后,长链甘油三酯自纳米乳脂解后水性胶束相中灰黄霉素的百分含量显著提高了32.4%,而中链甘油三酯自纳米乳仅提高5.7%。结论 甘油三酯的脂解程度和速度与其自身结构、组成及体外脂解体系的组成有关。与非脂解相比,体外脂解后灰黄霉素由单一分散在水相油滴中变为分布在水性胶束相、沉淀相及脂质相,并随油的组成及浓度变化而有所变化。这些研究结果为自纳米乳的吸收机制提供有价值的参考。

Abstract

OBJECTIVE To establish and optimize in vitro lipolysis model, and then to study griseofuvin(GRI)distribution during in vitro lipolysis of self-nanoemulsifying drug delivery systems(SNEDDSs). METHODS The lipolysis rate and extent of triglyceride(TG)were two index for in vitro lipolysis model optimization. The partitioning of GRI into lipolysis phases(aqueous phase, pellet phase, lipid phase) was exploited to investigate the impact of structure and lipid loaded of TG on GRI distribution of SNEDDSs in vitro lipolysis.RESULTS The optimal lipolysis model at the start of the experiment was as follows:800 U穖L-1 Pancreatin extract,5/1.25 mmol稬-1NaTDC/PC micelle and 50 mmol稬-1 Trizma maleate. The addition way of Ca2+ for medium chain triglyceride (MCT) and long chain triglyceride(LCT) were fixed addition 5 mmol稬-1 and continuous addition 0.008 mmol穖in-1, respectively. With the same amount of TG in SNEDDSs, percent content of GRI in aqueous phase of LCT-SNEDDS was higher than MCT-SNEDDS. When TG loaded doubled, GRI in aqueous phase of LCT-SNEDDS significantly increased by 32.4%, and which of MCT-SNEDDS raised only 5.7%, respectively. CONCLUSION The lipolysis rate and extent of TG were correlated with its structure and composition of TG and in vitro lipolysis model. Compared to GRI-SNEDDS without lipolysis, during in vitro lipolysis GRI had transferred to aqueous phase, pellet phase and lipid phase from which was only dispersed in emulsion droplet. And the distribution of GRI during in vitro lipolysis depended on the composition and loading rate of TG in SNEDDS. These results may provide useful references to study the absorption mechanism of SNEDDS.

关键词

自纳米乳给药系统 / 体外脂解模型 / 灰黄霉素 / 动态分布

Key words

self-nanoemulsifying drug delivery system / in vitro lipolysis model / griseofuvin / drug distribution

引用本文

导出引用
林婉婷,龙晓英*,吴慧仪,卢彬,张颖峰. 灰黄霉素纳米乳体外脂解过程中药物动态分布研究[J]. 中国药学杂志, 2015, 50(6): 512-520 https://doi.org/10.11669/cpj.2015.06.012
LIN Wan-ting,LONG Xiao-ying*,WU Hui-yi, LU Bin, ZHANG Ying-feng. Drug Distribution During in Vitro Lipolysis of SNEDDSs Containing Griseofulvin[J]. Chinese Pharmaceutical Journal, 2015, 50(6): 512-520 https://doi.org/10.11669/cpj.2015.06.012
中图分类号: R944   

参考文献

[1] DAHAN A, HOFFMAN A. Rationalizing the selection of oral lipid based drug delivery systems by an in vitro dynamic lipolysis model for improved oral bioavailability of poorly water soluble drugs[J]. J Controlled Release, 2008,129(1):1-10.[2] FATOUROS D G, KARPF D M, NIELSEN F S, et al. Clinical studies with oral lipid based formulations of poorly soluble compounds[J]. Ther Clin Risk Manag, 2007, 3(4):591-604.[3] SINGHA B, SINGHA R, BANDYOPADHYAY S, et al. Optimized nanoemulsifying systems with enhanced bioavailability of carvedilol[J]. Colloids Surf B:Biointerfaces, 2013, 101(1):465-474. [4] GHAI D, SINHA V R. Nanoemulsions as self-emulsified drug delivery carriers for enhanced permeability of the poorly water-soluble selective β1-adrenoreceptor blocker Talinolol[J]. Nanomedicine, 2012, 8(5):618-626. [5] ROSENTHAL R, GUNZEL D, FINGER C, et al. The effect of chitosan on transcellular and paracellular mechanisms in the intestinal epithelial barrier[J]. Biomaterials, 2012, 33(9):2791-2800.[6] ALAM M A, Al-JENOOBI F I, Al-MOHIZEA A M. Everted gut sac model as a tool in pharmaceutical research:Limitations and applications[J]. J Pharm Pharmacol, 2012, 64(3):326-336.[7] LAND L M, LI P, BUMMER P M. Mass transport properties of progesterone and estradiol in model microemulsion formulations[J]. Pharm Res, 2006, 23(10):2482-2490.[8] MILLER J M, BEIG A, KRIEG J B,et al. The solubility-permeability interplay:Mechanistic modeling and predictive application of the impact of micellar solubilization on intestinal permeation[J]. Mol Pharm,2011, 8(5):1848-1856.[9] FRIEDMAN H I, NYLUND B. Intestinal fat digestion, absorption, and transport[J]. Am J Clin Nutr,1980,33(5):1108-1139.[10] SALENTINIG S, SAGALOWICZ L, LESER M E,et al.Transitions in the internal structure of lipid droplets during fat digestion[J].Soft Matter,2011,7(2):650-661.[11] LARSEN A T, SASSENE P, MULLERTZ A. In vitro lipolysis models as a tool for the characterization of oral lipid and surfactant based drug delivery systems[J]. Int J Pharm,2011,417(1-2):245-255.[12] THOMAS N, HOLM R, RADES T, et al. Characterising lipid lipolysis and its implication in lipid-based formulation development[J]. AAPS J, 2012,14(2):860-871.[13] TERMEAU-POULLAIN S,CRAUSTE-MANCIETS S, BROSSARD D,et al. Effect of oil-in-water submicron emulsion surface charge on oral absorption of a poorly water-soluble drug in rats[J]. Drug Deliv, 2008,15(8):503-514.[14] AGGARWAL N, GOINDI S, KHURANA R. Formulation, characterization and evaluation of an optimized microemulsion formulation of griseofulvin for topical application[J]. Colloids Surf B:Biointerfaces,2013,105(1):158-166.[15] BERGSTRM C A,HOLM R,JRGENSEN S A.Early pharmaceutical profiling to predict oral drug absorption:Current status and unmet needs [J].Eur J Pharm Sci, 2014, 16(57):173-199.[16] CHRISTENSEN J , SCHULTZ K, MOLLGAARD B,et al. Solubilisation of poorly water-soluble drugs during in vitro lipolysis of medium-and long-chain triacylglycerols[J]. Eur J Pharm Sci, 2004, 23(3):287-296.[17] FOURNET B, LEROY Y, MONTREUIL J,et al. Primary structure of the glycans of porcine pancreatic lipase[J]. Eur J Biochem, 1987, 170(1-2):369-371.[18] SEK L, PORTER C J, CHARMAN W N. Characterisation and quantification of medium chain and long chain triglycerides and their in vitro digestion products, by HPTLC coupled with in situ densitometric analysis[J]. J Pharm Biomed Anal, 2001, 25(3-4):651-661.[19] THOMAS N, MULLERTZ A, GRAF A,et al. Influence of lipid composition and drug load on the in vitro performance of self-nanoemulsifying drug delivery systems[J]. J Pharm Sci,2012, 101(5):1721-1731.[20] SHEN T. Studies on oral drug delivery systems of low molecular weight heparin-Development of nanoemulsion and intestinal patch[D].Shanghai:Fudan University,2005.[21] FATOUROS D G, WALRAND I, MULLERTZ A, et al. Colloidal structures in media simulating intestinal fed sate conditions with and without lipolysis products [J].Pharm Res,2009, 26(2):361-374.[22] PATTON J S, CAREY M C. Inhibition of human pancreatic lipase-colipase activity by mixed bile salt-phospholipid micelles[J]. Am J Physiol, 1981, 241(4):328-336.[23] DEVRAJ R, WILLIAN H D, WARREN D B, et al. In vitro digestion testing of lipid-based delivery systems:Calcium ions combine with fatty acids liberated from triglyceride rich lipid solutions to form soaps and reduce the solubilization capacity of colloidal digestion products[J]. Int J Pharm, 2013, 441(1-2):323-333.[24] MIAO X F, ZHU M X, XU W P,et al. QTL Analysis of fatty acids contents in soybean [J]. Acta Agronomica Sin (作物学报), 2010, 36(9):1498-1505.[25] PING Q N.Gastrointestinal Transit and Formulation Design for Chinese Medicines(中药成分的胃肠转运与剂型设计)[M]. Beijing:Chemical Industry Press,2009:32.[26] DAHAN A, HOFFMAN A. Use of a dynamic in vitro lipolysis model to rationalize oral formulation development for poor water soluble drugs:Correlation with in vivo data and the relationship to intra-enterocyte processes in rats[J].Pharm Res, 2006,23(9):2165-2174.[27] MU H,HOLM R, MLLERTZ A.Lipid-based formulations for oral administration of poorly water-soluble drugs[J].Int J Pharm,2013,453(1):215-224.

基金

国家自然科学基金资助项目(81373361);广东省自然基金资助项目(S2013020012980)
PDF(1997 KB)

Accesses

Citation

Detail

段落导航
相关文章

/